Enormes reservorios de gas frío proporcionaron alimento a los agujeros negros supermasivos
Esta imagen muestra un halo de gas recién observado, superpuesto a una imagen más antigua de una fusión de galaxias. El halo a gran escala de gas de hidrógeno se muestra en azul y está unido a la galaxia, que contiene un cuásar en su centro. El débil y brillante gas de hidrógeno del halo proporciona la fuente de alimento perfecta para el agujero negro supermasivo que hay en el centro del cuásar.Crédito: ESO/Farina et al.; ALMA (ESO/NAOJ/NRAO), Decarli et al.
Utilizando el Very Large Telescope de ESO, un equipo de astrónomos ha observado reservorios de gas frío alrededor de algunas de las primeras galaxias del universo.
Estos halos de gas son el alimento perfecto para agujeros negros supermasivos, situados en el centro de estas galaxias, que ahora se ven como eran hace más de 12.500 millones de años.
Este almacén de alimento podría explicar cómo estos monstruos cósmicos crecieron tan rápido durante un período de la historia del universo conocido como el Amanecer Cósmico.
“Ahora podemos demostrar, por primera vez, que las galaxias primordiales tienen suficiente comida en su entorno para mantener tanto el crecimiento de agujeros negros supermasivos como la intensa formación de estrellas”, afirma Emanuele Paolo Farina, del Instituto Max Planck de Astronomía de Heidelberg, Alemania, quien dirigió la investigación, publicada en la revista The Astrophysical Journal.
"Esto añade una pieza fundamental al rompecabezas que los astrónomos están armando para describir cómo se formaron las estructuras cósmicas hace más de doce mil millones de años".
Primeros monstruos
Una de las preguntas que se han hecho siempre los astrónomos es cómo pudieron los agujeros negros supermasivos crecer tanto y en una etapa tan temprana de la historia del universo.
“La presencia de estos primeros monstruos, con masas de varios miles de millones de veces la masa de nuestro Sol, es un gran misterio”, dice Farina.
Esto significa que los primeros agujeros negros, que podrían haberse formado a partir del colapso de las primeras estrellas, deben haber crecido muy rápido. Pero, hasta ahora, no se habían detectado "alimentos para agujeros negros" —gas y polvo— en cantidades lo suficientemente grandes como para explicar este rápido crecimiento.
Para complicar aún más las cosas, observaciones previas llevadas a cabo con ALMA (Atacama Large Millimeter/submillimeter Array), revelaron una gran cantidad de polvo y gas en estas primeras galaxias que alimentaron la rápida formación de estrellas. Estas observaciones de ALMA sugirieron que podría haber pocas sobras para alimentar a un agujero negro.
Resolviendo el misterio
Para resolver este misterio, Farina y sus colegas utilizaron el instrumento MUSE, instalado en el Very Large Telescope (VLT) de ESO, en el desierto chileno de Atacama, para estudiar cuásares, objetos extremadamente brillantes alimentados por agujeros negros supermasivos que se encuentran en el centro de galaxias masivas.
El trabajo se centró en el estudio de 31 cuásares, vistos como eran hace más de 12.500 millones de años, en un momento en que el universo todavía era un bebé y contaba con tan solo unos 870 millones de años de edad. Esta es una de los sondeos de cuásares más grandes realizado en esta etapa temprana de la historia del universo.
Los astrónomos descubrieron que 12 de los cuásares estudiados estaban rodeados por enormes reservorios de gas: halos de frío y denso gas de hidrógeno que se extienden 100.000 años luz desde los agujeros negros centrales y con miles de millones de veces la masa del Sol.
También las galaxias
El equipo, de Alemania, Estados Unidos, Italia y Chile, también descubrió que estos halos de gas estaban estrechamente unidos a las galaxias, proporcionando la fuente de alimento perfecta para mantener tanto el crecimiento de agujeros negros supermasivos como la intensa formación estelar.
La investigación fue posible gracias a la excelente sensibilidad de MUSE (Multi Unit Spectroscopic Explorer, explorador espectroscópico multiunidad), instalado en el VLT de ESO, que, según Farina, fue un "cambio en las reglas del juego" en el estudio de los cuásares.
“En cuestión de unas horas por objeto observado, pudimos adentrarnos en el entorno de los agujeros negros más masivos y voraces presentes en el joven universo”, añade.
Mientras que los cuásares son brillantes, los reservorios de gas que hay a su alrededor son mucho más difíciles de observar. Pero MUSE puede detectar el débil resplandor del gas de hidrógeno en los halos, permitiendo a los astrónomos revelar finalmente los alijos de comida que potencian los agujeros negros supermasivos en el universo primitivo.
En el futuro, el ELT (Extremely Large Telescope) de ESO, ayudará a los científicos a revelar aún más detalles sobre galaxias y agujeros negros supermasivos en los primeros dos mil millones de años después del Big Bang.
“Con el poder del ELT, podremos profundizar aún más en el universo primitivo para detectar muchas más nebulosas de gas”, concluye Farina.
Esta imagen muestra un halo de gas recién observado, superpuesto a una imagen más antigua de una fusión de galaxias. El halo a gran escala de gas de hidrógeno se muestra en azul y está unido a la galaxia, que contiene un cuásar en su centro. El débil y brillante gas de hidrógeno del halo proporciona la fuente de alimento perfecta para el agujero negro supermasivo que hay en el centro del cuásar.Crédito: ESO/Farina et al.; ALMA (ESO/NAOJ/NRAO), Decarli et al.
Utilizando el Very Large Telescope de ESO, un equipo de astrónomos ha observado reservorios de gas frío alrededor de algunas de las primeras galaxias del universo.
Estos halos de gas son el alimento perfecto para agujeros negros supermasivos, situados en el centro de estas galaxias, que ahora se ven como eran hace más de 12.500 millones de años.
Este almacén de alimento podría explicar cómo estos monstruos cósmicos crecieron tan rápido durante un período de la historia del universo conocido como el Amanecer Cósmico.
“Ahora podemos demostrar, por primera vez, que las galaxias primordiales tienen suficiente comida en su entorno para mantener tanto el crecimiento de agujeros negros supermasivos como la intensa formación de estrellas”, afirma Emanuele Paolo Farina, del Instituto Max Planck de Astronomía de Heidelberg, Alemania, quien dirigió la investigación, publicada en la revista The Astrophysical Journal.
"Esto añade una pieza fundamental al rompecabezas que los astrónomos están armando para describir cómo se formaron las estructuras cósmicas hace más de doce mil millones de años".
Primeros monstruos
Una de las preguntas que se han hecho siempre los astrónomos es cómo pudieron los agujeros negros supermasivos crecer tanto y en una etapa tan temprana de la historia del universo.
“La presencia de estos primeros monstruos, con masas de varios miles de millones de veces la masa de nuestro Sol, es un gran misterio”, dice Farina.
Esto significa que los primeros agujeros negros, que podrían haberse formado a partir del colapso de las primeras estrellas, deben haber crecido muy rápido. Pero, hasta ahora, no se habían detectado "alimentos para agujeros negros" —gas y polvo— en cantidades lo suficientemente grandes como para explicar este rápido crecimiento.
Para complicar aún más las cosas, observaciones previas llevadas a cabo con ALMA (Atacama Large Millimeter/submillimeter Array), revelaron una gran cantidad de polvo y gas en estas primeras galaxias que alimentaron la rápida formación de estrellas. Estas observaciones de ALMA sugirieron que podría haber pocas sobras para alimentar a un agujero negro.
Resolviendo el misterio
Para resolver este misterio, Farina y sus colegas utilizaron el instrumento MUSE, instalado en el Very Large Telescope (VLT) de ESO, en el desierto chileno de Atacama, para estudiar cuásares, objetos extremadamente brillantes alimentados por agujeros negros supermasivos que se encuentran en el centro de galaxias masivas.
El trabajo se centró en el estudio de 31 cuásares, vistos como eran hace más de 12.500 millones de años, en un momento en que el universo todavía era un bebé y contaba con tan solo unos 870 millones de años de edad. Esta es una de los sondeos de cuásares más grandes realizado en esta etapa temprana de la historia del universo.
Los astrónomos descubrieron que 12 de los cuásares estudiados estaban rodeados por enormes reservorios de gas: halos de frío y denso gas de hidrógeno que se extienden 100.000 años luz desde los agujeros negros centrales y con miles de millones de veces la masa del Sol.
También las galaxias
El equipo, de Alemania, Estados Unidos, Italia y Chile, también descubrió que estos halos de gas estaban estrechamente unidos a las galaxias, proporcionando la fuente de alimento perfecta para mantener tanto el crecimiento de agujeros negros supermasivos como la intensa formación estelar.
La investigación fue posible gracias a la excelente sensibilidad de MUSE (Multi Unit Spectroscopic Explorer, explorador espectroscópico multiunidad), instalado en el VLT de ESO, que, según Farina, fue un "cambio en las reglas del juego" en el estudio de los cuásares.
“En cuestión de unas horas por objeto observado, pudimos adentrarnos en el entorno de los agujeros negros más masivos y voraces presentes en el joven universo”, añade.
Mientras que los cuásares son brillantes, los reservorios de gas que hay a su alrededor son mucho más difíciles de observar. Pero MUSE puede detectar el débil resplandor del gas de hidrógeno en los halos, permitiendo a los astrónomos revelar finalmente los alijos de comida que potencian los agujeros negros supermasivos en el universo primitivo.
En el futuro, el ELT (Extremely Large Telescope) de ESO, ayudará a los científicos a revelar aún más detalles sobre galaxias y agujeros negros supermasivos en los primeros dos mil millones de años después del Big Bang.
“Con el poder del ELT, podremos profundizar aún más en el universo primitivo para detectar muchas más nebulosas de gas”, concluye Farina.
Fuente TENDENCIAS 21